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THE CLASSIFICATION OF INJECTIVE 
BANACH LATTICES 

BY 

P. J. M A N G H E N I  

A B S T R A C T  

Let E be a 1-injective Banach lattice, X any Banach space and T : E  ~ X a 
norm bounded linear operator.  Then  either T is an isomorphism on some copy 
of l~ in E or for all o" > 0 there is ~ E E"  such that I1Tu It <- ~ ( l u  [) + o-I[ u II for 
all u E E. We deduce the theorem that: A norm order cont inuous injective 

Banach lattice is order isomorphic to an (AL)-space. 

1. Introduction 

The concept of a 1-injective Banach lattice first appears in Lotz [5] who 

proved that P,-spaces and (AL)-spaces are l-injective Banach lattices and that 

the class of 1-injective Banach lattices is closed with respect to direct sums in the 

sense of l~. In [1] Cartwright proves that every finite dimensional 1-injective 
r~l rtt. , 

Banach lattice is order isometric to a lattice of the form (Z,=, O l, %. that is, a 

finite/=-direct sum of (finite dimensional) Lt0,)-spaces. And in [4] Lindenstrauss 

and Tzafriri have shown that there is a function f(A) such that every finite 

dimensional A-injective Banach lattice (A > 1) is order isomorphic, with 

isomorphism constant/(A), to a lattice of the form (E,=~ �9 I7%. It follows that 

any discrete injective Banach lattice is order isomorphic to a 1-injective Banach 

lattice. In [2] Haydon had obtained an operator-theoretic representation of 

general 1-injective Banach lattices. 
These results prompt the following problem: What representations are 

available for general injective Banach lattices? More precisely: Is every injective 

Banach lattice order isomorphic to a 1-injective Banach lattice? 

2. Preliminaries 

2.1. DEFINITIONS. A real Banach lattice E is a A-injective Banach lattice 

(in short: A-IBL) if for every Banach lattice G, every closed sublattice F of G 
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and every positive linear operator  u : F ~ E there is a positive linear extension 

v :  G ~ E with II v I1 = A II u II. An injective Banach lattice is a lattice that is a 

A-IBL for some A > 1. 

Let S, T be Stonian spaces and ~r : T ~ S be a continuous surjection. A linear 

operator  u : C ( T ) ~ C ( S )  is 1r-modular if u ( f . g o r r ) = g ,  u(f) for all 

f ~ C(T), g ~ C(S). We denote by ~,, (C(T) ;  C(S)) the closed linear subspace 

of the Banach space ~(C(T) ;C(S ) )  of norm continuous linear operators, 

consisting of the rr-modular operators. 

We recall that a linear operator  A : E ~ F (E, F Banach lattices) is positive if 

Au >= 0 for all u ~ E+. A positive linear operator  A : E ~ F is order continuous 

if for every upward directed set 12 in E+ with sup ~ = u, A i') is upward directed 

and sup A ~'l = Au. We denote by ~ * ( E  ; F)  the space of norm bounded linear 

operators E ~ F that are expressible as the difference of two positive order 

continuous linear operators and refer to operators in Lf*(E;  F)  simply as order 

continuous operators. 

We shall need the following result: 

2.2. THEOREM (Haydon [2]). A Banach lattice E is a 1-injective Banach 

lattice if and only if there exist Stonian spaces S, T and a continuous surjection 

7r : T---) S such that E is isometrically lattice isomorphic to ~*~(C(T); C(S)). 

3. A structure theorem 

3.1. D~FINITION. Let E be a 1-IBL such that E = ~ * ( C ( T ) ;  C(S)), with S, 

T, ~" as in Theorem 2.2 above. Given a linear function q~ in E"  we define 

/x~ : C(S)--> R by 

tx, ( f ) =  sup{q~(f, u) :  u ~ba l l  E+} 

for all f E C(S)+ where ( f .  u ) (g)  = f -  u(g)  for all g E C(T), f ~ C(S), u E E. 

3.2. PROPOSITION. Let E be a 1-injective Banach lattice with E =  

Jg*(C(T);  C(S)). For each q~ ~ E" define tx~ as above. Then 

(a) /x, extends to a positive linear functional on C(S), also denoted by tx, ; 

(b) q~(u)_-_/x,(ulT) for all u E E . ,  where 1T is the function 1T(t)--  1 for all 

t E T ;  

Paoov. (a) Fix e > 0 and choose v ~ ball E+ such that 

p~(1,)<- r  e. 
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Then, by considering first of all f E ball C(S). such that f takes only a finite 

number of values and extending by continuity to arbitrary f @ ball C(S)+ (see [2] 

section 3 and section 5), we have 

~(f"  u) _--- ~( f"  v) + e I]f[I 

for all u E ball E+, and all f E C(S)+. 
Hence 

/.~. (f" u) < ~(f"  v )+  e Ilf[[ 

for all f E C(S)+. 
Now given f, g ~ C(S)., we have by definition 

and also 

I~,(f + g) <= ~,( f )  + tz,(g) 

~,~ (f) +/~. (g) ~ ~(f" v) + q~(g" v) + ~ffllfll + [rg II) 

= ,p((f + g ) .  v) + e(l]f[[ + I[g ]1) 

--< ~,~ 0 r + g) + ~(llfll +[[g II) 

<=l~,(f)+ l~.(g)+ e(]lfII+][gll). 

As e > 0 was arbitrary we have 

# , ( f +  g) = r e ( f )  + re(g) .  

Moreover for all a > 0, ap~ (f) = p,, (eft) is clear. Hence ~,  extends to a positive 

linear functional on C(S). 
(b) Let uEE+ and O = s u p p o r t  of ulT in S. Set h=(UlT) 'X~.  Then 

h ~" u E ballE+, since if - 1T =< g =< IT, -- UlT < u(g)=< UlT. Hence 

m ( u l T )  = ~ . ( h )  

= sup{q~(h ' w): w Cball  E+} 

>= q~(h . h-~ u) = q~(u ). 

(c) This is clear from definitions. [~ 

3.3. A NOTE. We recall the following criterion for weak compactness of 

subsets of Ll(U)-spaces, v a finite measure: A subset A of L~(v) is relatively 

weakly compact if and only if for all o - > 0  there exists M > 0  such that 

t l ( I f l -  M)+II, = o- for all f G A. Thus by ihe Kakutani representation theorem a 
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bounded subset A of an AL-space F is relatively weakly compact if and only if 

for all o- > 0 there is v ~ F+ such that II(I u I - v y [I -<- o- for all u ~ A. 

In particular let K be any compact space and denote by M ( K )  the AL-space 

of all Radon measures on K, considered to be the strong dual of C(K) .  For a 

bounded subset A of M ( K )  it is shown in [6] that the following are equivalent: 

(a) A is relatively weakly compact; 

(b) For each weakly null sequence (f,) in C(K),  lira, ~ ([.) = 0 uniformly for/,1, 

in A ;  

(c) For each bounded sequence (f.) in C ( K )  satisfying fo ^ f,. = 0  (mfi  n), 

l im . /~ ( f . )=0  uniformly for p, in A;  

(d) For each sequence (U,)  of disjoint open subsets of K, l i m . / ~ ( U . ) = 0  

uniformly for /~ in A. 

3.4. THEOREM. Let E be a 1-injective Banach lattice and X any Banach 

space. Let V : E ~ X  be a bounded linear operator. Then either V is an 

isomorphism on some copy of l~ in E or for all o-> 0 there exists an element 

tO E E"  such that II v ,  [I <- tO ( I u 1) + o-II u [[ for all u E E. 

PROOF. We assume the Haydon representation E = ~ * ( C( T) ;  C(S)) .  For 

each f E X' ,  IV' f]  E E"  and so with the notation of 3.1 above, let 

A (V )  = {tz, : r = [ V ' f f  and f E ball X'}. 

Then by Lemma 3.2, A ( V )  is a norm bounded subset of C(S) ' .  Consider the 

following dichotomy: 
(a) A ( V )  is relatively weakly compact in C(S)'. 
Then by the criterion in 3.3 above, given o- > 0 we can find A ~ C(S)" such 

that 
II(~. - ,~)+11--<_ o - for all /x,~ @ A (V). 

Hence for each u E E, 

II vu II = sup{f(Vu ): f ~ ball X'}  

-<_ sup{(t V ' f [ ) ( l u  [): f @ ball X'} 

=< sup{p,, (I u I 1r f E ball X', r = I V'f[}. 

But by choice of A and o-, 

, . l l u  I1--> ( ~  - A)+(! ,, l xT) --> ( ~ .  - ,~)(I u I1~)  

for all /x~ C A ( V ) .  Thus 

~ ( I  u 11.)--  A(I u la~)+,~l tu  11, p., E A(V);  
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II Vu II ~ sup{,~. (1 u I1 T): f ~ ball X' ,  ,p = 5 V'fl}  

< A ( I . l l ~ ) + o ' l l . t l ,  . ~ E .  

Define ~ E E ~  by 0 (u ) - -A(UlT) ,  U ~ E .  Then 

II v,, tt_< a([ , ,  t ~ ) + , ~  II. II = ~,( [ .  [) + ~l[~, 1[. a C E .  

(b) A(V)  is not relatively weakly compact. Since A (V) is a norm bounded 

subset of C(S)', criterion (d) in 3.3 implies that we can find disjoint closed and 

open subsets (A.)  of the Stonian space S and e > 0 such that 

(I) sup{/x. ( e . ) : /x .  ~A(V)}>-_~e > 0 ,  

for all n where e. = )A., the characteristic function of A..  

But for each f E bail X'  and each n, if @ = I g'f l ,  we have 

/x~ (e.)  = sup{I V'fl(e." u) :  u ~ba l l  E.} 

; sup{] V'f[(z):O_<-_z <=e..u, u ~ ball E+} 

so 

(2) /x. (e.)  = sup{If(Vz)1:0<_- z N e . -  u, u Ebal l  E+}. 

Fix n. Then by (1) we can find f. E ball X'  such that if r = l V'f. } then 

(3) /x,,. (e.) > e. 

And hence by (2) and (3) we can find u. E ball E+ such that 

(4/ sup{[f.(Vz)) :0_<-z -<_ e . .  u.I>~e. 

Now by (4) we can find z.,  0_<- z. _<- e. �9 u. such that 

(5) If. (Vz,,)} > e/3. 

Hence by (5) for all n, 

(6) II Vz. [[ = sup{f( Vz. ) : f ~ ball X'} > e/3, 

But now given any scalars (a . )  and g ~ C(T), 

(7) y, a.z. (g) (s)  = a~z~ (g) (s)  
n 
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whenever  s E A,, ,  using the fact that e, A e,, = 0 (m ~ n) and 0 _-< z, _-< e, �9 u, for 

all n, so that z,, ^ z ,  = 0  ( m r  Now by (5) 

inf l[ z. [[ => e/3 > O. 
n 

Hence by (7) 

a,z,  >= o sup [a,, ] 
n t n  

so that  the band generated by (z,)  in E is isomorphic to I~(N). By (5), V 

restricted to this band is not weakly compact.  Hence by [3] prop. 2.f.4 there is a 

subspace of E isomorphic to Is(N) on which V is an isomorphism. [] 

3.5. COROLLARY. Let X be a complemented subspace of an injective Banach 

lattice E. Then either X contains a subspace isomorphic to L or X embeds as a 

subspace of an AL-space. 

PROOf. Any  injective Banach lattice embeds as a complemented  subspace of 

a suitable 1-injective Banach lattice and so it suffices to consider complemented  

subspaces of 1-IBLs. 

Let P : E --~ X be the projection. By 3.4 either P is an isomorphism on a copy 

of l= in which case X contains l= as an isomorphic subspace or given any o- > 0 

we can find to E E "  such that  

IlPu II =< to(I u J)+ ~llu [I, u ~ E .  

In the latter case, if u E X = range(P)  then 

[[ u [[ = [[Pu [[ <= to(I u ] )+ o-[[u [[; 

so that (1 - o-)l I u [I < tO([ u [)for all u E X. Take o- - 3. Then II u II ~ u I) where 

~o = 3tO E E ' .  Let  

N ={u  E E : q ~ ( I u  l) =0}. 

Then N is a closed linear subspace of E that is also a lattice ideal in E. And  so 

E / N  is a normed lattice with norm 11 ti 11, = ~o(1 u 1) for all ti E E/N.  Moreover  

11" Ill is additive on the canonical positive cone of E/N.  Hence the complet ion E~ 

of (E/N,  If" I11) is an AL-space.  Finally, if u E X, [1 u II-<- ~o([u ]) =< 11 ~o 1111 u 11 so that 

11 u [I <-- [[ u [[~ _-< 11 ~o I[ [[ u [[. Thus the quotient  map E --~ E / N  ~ E,~ restricts to an 

isomorphic embedding of X into the AL-space E~. [] 

3.6. DEVINmON. A Banach lattice E has order  continuous norm (we say E is 
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order continuous) if for every downward directed set {u~ : a  E A }  in E with 

inf{u~ : a  ~ A } = 0 ,  we have lima Iluoll =0.  

3.7. THEOREM. An  order continuous injective Banach lattice is order isomor- 

phic to an AL-space. 

PROOF. An order continuous Banach lattice F does not contain a subspace 

isomorphic to L, [6]. Now F is, by hypothesis, a sublattice of an injective Banach 

lattice so that the lattice homomorphism constructed in the proof of 3.5 embeds 

F as a sublattice of E~. Hence F is a closed sublattice of an AL-space E~ and 

hence F is order isomorphic to an AL-space. [] 
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